过去十年,中国工业企业和科研机构正在加快对于设备和仪器的升级,从中国制造迈向中国创造,因此对于纳米级别运动控制的需求出现了爆发。
精密仪器设计中相关的材料的选择与传统机械设计一般考虑相关,但主要关注点可能不同:例如强度和质量可能不太重要,但保持形状和尺寸稳定性的能力,通常是要求很高的。由于材料的使用量小,因此材料成本可能不会对总成本产生重大影响,因此,性能被更优先考虑,并且使用各种新材料是可行的。结构材料的热性能一直是精密仪器设计和使用的主要关注点。在正常使用中,所有机械设备都会遇到环境温度变化、执行器功耗、操作员操作等引起的热量输入。热扰动的直接影响是热膨胀,它会引起机械部件的尺寸变化,从而导致仪器精度的损失。 纳米位移系统只有经过有效校准,才能成为真正的高精度定位系统。移相器性能分析与优化原则
压电纳米定位台具有移动面,是通过带有柔性铰链的机械结构将压电陶瓷产生的位移及出力等进行输出,分直驱与放大两种结构。以压电陶瓷作为驱动源,结合柔性铰链机构实现X轴、Z轴、XY轴、XZ轴、XYZ轴精密运动的压电平台,驱动形式包含压电陶瓷直驱机构式、放大机构式。具有体积小、无摩擦、响应速度快等特点,配置高精度传感器,可实现纳米级分辨率及定位精度且具有较高的可靠性,在精密定位领域中发挥着主要作用。近年来,由于光通信技术飞速发展,光纤连接器作为光通信比较基本的光源器件,所以对其质量及可靠性有了更严格的要求。为了提高光纤连接及光信号传输的效率,因此光纤端面的检测至关重要。为得到光纤端面的三维参数,通常根据光学干涉来进行测量。其中由压电陶瓷控制器控制的压电纳米定位台用于移动3D干涉仪系统中的干涉物镜或光纤连接器以产生位相移动,分5步位相移动,每移动一步后由CCD摄像头读取干涉条纹。 移相器性能分析与优化原则纳米定位台底座固定螺丝多大尺寸?
压电驱动纳米定位平台是指以压电陶瓷驱动器作为驱动元件,以柔性铰链机构为支撑导向的微位移运动平台,是实现动态纳米控制不可或缺的关键部分。在微操作器,磁盘驱动、原子力显微镜、扫描隧道显微镜、纳米压印、纳米操纵等领域有着广泛的应用。该平台由压电陶瓷驱动器、柔性铰链微位移机构、微位移测量传感器和控制系统组成。适用范围:激光卫星通信、激光雷达、超分辨率光学成像、光学测量、显微成像、半导体检测、表面检测、高密度存储
纳米技术是21世纪重要的科学技术之一,它将引起一场新的工业发展浪潮。纳米技术是包括纳米电子、纳米材料、纳米生物、纳米机械、纳米制造、纳米测量、纳米物理纳米化学等诸多科学技术在内的一组技术的汇聚,其目的是研究、发展和加工结构尺寸小于100nm的材料、装置和系统,以获得具有所需功能和性能的产品。科技发达国家为抢占这一高新技术生长点、制高点,竞相将纳米技术列为21世纪战略性基础研究的优先项目。纳米测量技术是纳米技术的重要组成部分,对于纳米材料的发展。纳米器件和系统的研究与开发具有十分重要的意义。纳米测量技术的内涵涉及纳米尺度的评价、成份、微细结构和物性的纳米尺度的测量,它是在纳米尺度上研究材料和件的结构与性能、发现新现象、发展新方法、创造新技术的基础。纳米技术主要研究微观尺度的物体和现象,同时微纳米检测技术也主要指微米和纳米尺度和精度的检测技术。与广义的测量技术相比,纳采测量技术具有被测量的尺度小以及以非接触测量手段为主等主要特点。 北京微纳光科仪器(集团)有限公司主要提供《微》《纳》《光》《科》四个版块产品。
多轴集成一体结构,使串扰减小。纳动纳米-本系列多数产品X、XY和XYZ采用集成并联结构设计,可以抑制两个或多个单轴堆叠组合时容易出现的非正交性。此外,每个轴的传感器被固定到相同的基准,并且不断地监测和校正移动台偏离每个正交轴的运动。复合轴类型的XY和XYZ轴位移台的压电陶瓷元件布置在两侧并具有对称的开口。换句话说,其中一个轴由两个左右压电陶瓷元件支撑和驱动的结构(并联结构),即使同时驱动两个和三个轴也可以获得稳定的操作。 压电纳米定位台凭借高稳定性、高分辨率等优良特性。显微镜压电纳米样品控制系统性能
测试校准系统是将纳米位移系统内部的“标尺”与米定义联系起来,实现量值的溯源。移相器性能分析与优化原则
由压电陶瓷控制器控制的压电纳米定位台用于移动3D干涉仪系统中的干涉物镜或光纤连接器以产生位相移动,分5步位相移动,每移动一步后由CCD摄像头读取干涉条纹。压电纳米定位台内部采用无摩擦柔性铰链导向机构,一体化的结构设计。机构放大式驱动原理,内置高性能压电陶瓷,可实现纳米级位移。具有高刚性、高负载、无摩擦等特点,可适应匹配光纤端面检测的需求。压电纳米定位台内部采用无摩擦柔性铰链导向机构,一体化的结构设计。机构放大式驱动原理,内置高性能压电陶瓷,可实现纳米级位移。具有高刚性、高负载、无摩擦等特点。此外,压电纳米定位台还可用于:光路调整;纳米操控技术;纳米光刻,生物科技;激光干涉;CCD图像处理;纳米测量、显微操作;纳米压印、纳米定位;显微成像、共焦显微。 移相器性能分析与优化原则